Computer vision: models,
learning and inference

Chapter 2
Introduction to probability

Please send errata to s.prince@cs.ucl.ac.uk



Random variables

A random variable X denotes a quantity that is
uncertain

May be result of experiment (flipping a coin) or a real
world measurements (measuring temperature)

If observe several instances of X we get different
values

Some values occur more than others and this
information is captured by a probability distribution
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Joint Probability

Consider two random variables X and y

If we observe multiple paired instances, then some
combinations of outcomes are more likely than
others

This is captured in the joint probability distribution
Written as Pr(X,y)
Can read Pr(X,y) as “probability of X and y”
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Marginalization

We can recover probability distribution of any variable in a joint distribution
by integrating (or summing) over the other variables

Pr(x)

/\

Pr(a:') — /P?“(:C,y) dy Pr(z,y)

/P"r(;z:j y) dx

Pr(y)

Pr(y)
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Marginalization

We can recover probability distribution of any variable in a joint distribution
by integrating (or summing) over the other variables

Pr(x)

Pr(z,y)

Pr(z) = ZPT(SB,y)
Pr(y) = > Pr(z,y)




Marginalization

We can recover probability distribution of any variable in a joint distribution
by integrating (or summing) over the other variables

Pr(z)

Pr(z) = ZPr(az,y) M/\J
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Marginalization

We can recover probability distribution of any variable in a joint distribution
by integrating (or summing) over the other variables

Pr(z) = /Pfr'(:z:gy) dy

Pr(y) /P(r'(:z:? y) dx

Works in higher dimensions as well — leaves joint distribution between
whatever variables are left

Pr(x,y) = Z/Pr(wjx? Y, 2) dz
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Conditional Probability

* Conditional probability of X given that y=y, is relative
propensity of variable X to take different outcomes given that
y is fixed to be equal to y;.

* Written as Pr(X|y=Y,)

Pr(z,y)
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Conditional Probability

* Conditional probability can be extracted from joint probability
* Extract appropriate slice and normalize

Pr(z,y=vy*)  Pr(z,y =y*)

Pr(zly=y") =

- [ Pr(z,y=y*)dx  Pr(y=y*)

Pr(z,y)

AN

Pr(z|ly = y1)

M

Pr(z|ly = y2)

Z
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Conditional Probability

Pr(z,y = y* Pr(z,y = y*
Pr(zly — y*) — T(x,y_ y*) _ ?“(x,y_ Y )
| Pr(z,y =y*)dz  Pr(y=y*)

 More usually written in compact form

Pr(z,y)
Pr(y)

* Can be re-arranged to give
Pr(z,y) = Pr(z|y)Pr(y)
Pr(z,y) = Pr(y|z)Pr(x)

Pr(zly) =
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Conditional Probability

Pr(z,y) = Pr(z|y)Pr(y)

 This idea can be extended to more than two
variables

Pr(w,z,y,z) = Pr(w,z,y|z)Pr(z)
= Pr(w, x|y, z)Pr(y|z)Pr(z)
= Pr(wl|z,y, z)Pr(zly, z) Pr(y|z) Pr(z)
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Bayes’ Rule

From before:
Pr(z,y) = Pr(z|y)Pr(y)

Pr(z,y) = Pr(y|z)Pr(z)

Combining:
Pr(ylz)Pr(z) = Pr(zly)Pr(y)
Re-arranging: (2 |lu) Pr
Pr(yle) = gl
_ Pr(zly)Pr(y)
| Priz,y) dy

Pr(zly)Pr(y)
[ Pr(zly)Pr(y) dy
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Bayes’ Rule Terminology

Likelihood — propensity for Prior —what we know
observing a certain value of about y before seeing X
X given a certain value of y \

ol — _ Lrly)Pry)
e | Pr(z|y)Pr(y) dy

[ \

Posterior — what we Evidence —a constant to
know about y after ensure that the left hand
seeing X side is a valid distribution
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Independence

If two variables X and y are independent then variable X tells
us nothing about variable y (and vice-versa)

Pr(xly) = Pr(x)
Pr(ylx) = Pr(y)
Pr(z,y)

€T
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Independence

* |f two variables X and y are independent then variable X tells
us nothing about variable y (and vice-versa)

Pr(xly) = Pr(x)
Pr(ylr) = Pr(y)
Pr(z,y)
PT(33|?J = yl)
Pr(zly = y2)

el




Independence

* When variables are independent, the joint factorizes into a
product of the marginals:

Pr(x,y) = Pr(z|ly)Pr(y)

= Pr(xz)Pr(y)

Pr(z,y)

Pr(zly = v)

3

Pr(zly = y2)

el




Expectation

Expectation tell us the expected or average value of some
function f [X] taking into account the distribution of X

Definition:

E[fz]] = ) fla]Pr(x)

Eflz] = ] fle]Pr(x) d
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Expectation

Expectation tell us the expected or average value of some
function f [X] taking into account the distribution of X

Definition in two dimensions:

Elflz,y]] = //flaf,y]P’f“(%y) dx dy



Expectation: Common Cases

Eflz] = / fle]Pr(x) da

Function f|e] Expectation
T mean, fi,
" k'™ moment about zero
(x — p1z)" k'™ moment about the mean
(2 — )2 variance
(x — pg)” skew
(2 — f1z)" kurtosis
(v — pa)(y — fhy) covariance of x and y




Expectation: Rules

BUX) = [ flalPr(x = 2)de

Rule 1:

Expected value of a constant is the constant

Elk] =k
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Expectation: Rules

BUX) = [ flalPr(x = 2)de

Rule 2:

Expected value of constant times function is constant times
expected value of function

Bk flxl] = FELf 2]
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Expectation: Rules

BUX) = [ flalPr(x = 2)de

Rule 3:

Expectation of sum of functions is sum of expectation of
functions

Elflx] + glz]] = E[flz]] + Elg|z]]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 25



Expectation: Rules

BUX) = [ flalPr(x = 2)de

Rule 4:

Expectation of product of functions in variables X and y
is product of expectations of functions if X and y are independent

Elflz]glyl] = Elf[z]]Elgly]]  if 2,y independent
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Conclusions

* Rules of probability are compact and simple

* Concepts of marginalization, joint and conditional
probability, Bayes rule and expectation underpin all of the
models in this book

* One remaining concept — conditional expectation —
discussed later



